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a b s t r a c t

Nonlinear constrained finite element approximations to anisotropic diffusion problems are
considered. Starting with a standard (linear or bilinear) Galerkin discretization, the entries
of the stiffness matrix are adjusted so as to enforce sufficient conditions of the discrete
maximum principle (DMP). An algebraic splitting is employed to separate the contribu-
tions of negative and positive off-diagonal coefficients which are associated with diffusive
and antidiffusive numerical fluxes, respectively. In order to prevent the formation of spu-
rious undershoots and overshoots, a symmetric slope limiter is designed for the antidiffu-
sive part. The corresponding upper and lower bounds are defined using an estimate of the
steepest gradient in terms of the maximum and minimum solution values at surrounding
nodes. The recovery of nodal gradients is performed by means of a lumped-mass L2 projec-
tion. The proposed slope limiting strategy preserves the consistency of the underlying dis-
crete problem and the structure of the stiffness matrix (symmetry, zero row and column
sums). A positivity-preserving defect correction scheme is devised for the nonlinear alge-
braic system to be solved. Numerical results and a grid convergence study are presented for
a number of anisotropic diffusion problems in two space dimensions.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Some partial differential equations of elliptic type are known to possess a remarkable property: if the source term is non-
positive, then the solution attains its maximum on the boundary. This statement is known as the maximum principle and pro-
vides a useful criterion for the analysis of numerical approximations. A finite element scheme that does not generate
spurious extrema in the interior of the domain is said to satisfy the discrete maximum principle (DMP) which makes it possible
to prove uniform convergence of an approximate solution to the exact one [4]. Sufficient conditions of the DMP can be for-
mulated using the concept of monotone operators and, in particular, M-matrices which play an important role in numerical
linear algebra [3,23]. The inverse of a monotone matrix is nonnegative, and so is the solution of the algebraic system for any
nonnegative right-hand side. A numerical scheme that enjoys this property is called positivity-preserving. The DMP criterion
is more stringent since it requires that the row sums of the stiffness matrix be zero for all interior nodes.

Monotonicity constraints are difficult to satisfy at the discrete level. In many cases, the above sufficient conditions impose
severe restrictions on the choice of basis functions and on the geometric properties of the mesh. For a triangulation of acute
. All rights reserved.
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or nonobtuse type (all angles smaller than or equal to p=2) the piecewise-linear finite element approximation of the Poisson
equation produces a discrete operator that proves to be an M-matrix [4,12,13]. In the case of bilinear finite elements, it is
sufficient to require that all quadrilaterals be of nonnarrow type (aspect ratios smaller than or equal to

ffiffiffi
2
p

[6]). However,
the geometric approach to DMP verification fails in the case of higher-order finite elements [9], singularly perturbed convec-
tion–diffusion equations [15], and anisotropic diffusion problems [17]. As a consequence, nonphysical local extrema can and
do occur when a steep gradient cannot be resolved properly on a given mesh.

An ideal discretization must be conservative, consistent, and more than first-order accurate for smooth data. Moreover, it
must satisfy the DMP on arbitrary meshes, even if convective effects are strong and/or the diffusion tensor is heterogeneous/
anisotropic [17]. Unfortunately, no linear scheme can meet all of these requirements. A possible remedy is to adjust the coef-
ficients of the discrete problem in an adaptive way. In the case of hyperbolic conservation laws, this can be accomplished
using flux/slope limiters to achieve monotonicity. Many nonlinear high-resolution schemes are based on this design princi-
ple. However, the idea of blending linear approximations of high and low order cannot be directly transferred to the case of
anisotropic diffusion problems since the structure of numerical fluxes is different from the hyperbolic case.

Flux limiting for diffusion operators was addressed in a number of recent publications [2,10,24] but many open questions
remain. Monotone finite volume schemes for anisotropic diffusion problems are available [16,17] but they are merely pos-
itivity-preserving and, generally, do not satisfy the DMP. Moreover, their derivation is based on a design philosophy which is
not applicable to finite element approximations. The method proposed in [18] is based on constrained optimization and re-
quires a priori knowledge of the solution bounds. The solution of this constrained optimization problem can be very expen-
sive as the number of unknowns increases.

The algebraic flux correction paradigm described in [14,15] provides a general framework for the design of monotone dis-
cretizations on unstructured meshes. In the present paper, we extend this methodology to anisotropic diffusion problems
and enforce the DMP using a combination of algebraic and geometric criteria. The new algorithm constrains an antidiffusive
flux using the coefficients of a discrete gradient to derive the upper and lower bounds. The structure of these bounds resem-
bles that for flux-corrected transport (FCT) algorithms [15,25] but the limiting process is intended to control a local slope, as in
the case of symmetric limited positive (SLIP) schemes [11].

The outline of this paper is as follows. In Section 2, we formulate the continuous maximum principle to be emulated at the
discrete level. The Galerkin finite element discretization and the discrete maximum principle are dealt with in Sections 3 and 4,
respectively. The algebraic splitting described in Section 5 leads to the new slope limiting technique introduced in Section 6. A
positivity-preserving defect correction scheme for the iterative treatment of nonlinear antidiffusive terms is proposed in Sec-
tion 7. Numerical experiments and grid convergence studies for several 2D test problems are performed in Section 8 which is
followed by a summary and conclusions.

2. Continuous problem

We consider a mathematical model that describes the steady diffusive transport of a generic scalar uðxÞ in a bounded do-
main X � RD, where D ¼ 2 or 3, with piecewise smooth boundary C. The rate of transport is given by the vector-valued flux
function
vðxÞ ¼ �DðxÞruðxÞ; 8x 2 X; ð1Þ
where DðxÞ ¼ dij
� �

is a piecewise-constant (possibly anisotropic) diffusion tensor. In the context of flows in porous media,
the above formula is known as the Darcy law in which the functions v and u represent the velocity and pressure fields,
respectively.

The divergence of v is associated with a linear differential operator L defined by
LuðxÞ ¼ r � v ¼ �r � ðDruÞ; 8x 2 X: ð2Þ
In D space dimensions, the above formula can be written in the equivalent form
LuðxÞ ¼ �
XD

i¼1

@

@xi

XD

j¼1

dij
@u
@xj

 !
; 8x 2 X: ð3Þ
The so-defined operator L is called uniformly elliptic in the domain X if the diffusion tensor DðxÞ is symmetric and positive
definite at each point x 2 X. Under this assumption, the following maximum principle [21] holds for any u 2 C2ðXÞ \ Cð�XÞ
LuðxÞ 6 0; 8x 2 X ) max
x2�X

uðxÞ ¼max
x2C

uðxÞ: ð4Þ
The basic idea of a proof is as follows [7,13]. Let umax
C ¼maxx2CuðxÞ and introduce w ¼ max u� umax

C ;0
� �

. Consider a subdo-
main X� � X in which w ¼ u� umax

C P 0 and w ¼ 0 on the boundary. Integration by parts using Green’s formula yields
Z
X�

wðLuÞdx ¼
Z

X�

rw � ðDruÞdx ¼
Z

X�

rw � ðDrwÞdx: ð5Þ
Since Lu 6 0 and w P 0 in X, the left-hand side of this relation cannot be positive. On the other hand, the right-hand side is
nonnegative due to the positive definiteness of D. This can only be the case if w � 0, whence uðxÞ 6 umax

C ; 8x 2 �X.
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Applying (4) to the negative of u, one obtains the complementary minimum principle
LuðxÞP 0; 8x 2 X ) min
x2�X

uðxÞ ¼min
x2C

uðxÞ: ð6Þ
Continuous maximum and minimum principles, as stated above, are valid for second-order elliptic problems with Dirichlet
or mixed boundary conditions [13]. In the former case, they give an a priori estimate of u 2 C2ðXÞ \ Cð�XÞ in terms of the pre-
scribed boundary data g 2 C0ðCÞ. The corresponding boundary value problem is given by
�r � ðDruÞ ¼ q; in X;

u ¼ g; on C;

�
ð7Þ
where q is a given function that represents a volumetric source or sink of u. By virtue of (4) and (6), the maximum and min-
imum principles can be formulated as follows.

Theorem 1. The solution u 2 C2ðXÞ \ Cð�XÞ of problem (7) attains its maxima (minima) on the boundary C if q is nonpositive
(nonnegative) in X
q 6 0 ) max
x2�X

uðxÞ ¼max
x2C

gðxÞ; ð8Þ

q P 0 ) min
x2�X

uðxÞ ¼ min
x2C

gðxÞ: ð9Þ
Traditionally, Theorem 1 is called the maximum principle, regardless of the sign of q.

Corollary 1. If q ¼ 0 then the solution u 2 C2ðXÞ \ Cð�XÞ of (7) is bounded by
q ¼ 0 ) min
x2C

gðxÞ 6 uðxÞ 6 max
x2C

gðxÞ; 8x 2 X: ð10Þ
Corollary 2. The solution u 2 C2ðXÞ \ Cð�XÞ of problem (7) preserves the sign of the boundary data g 2 C0ðCÞ if q and g are non-
positive (nonnegative) in X
q 6 0; g 6 0 ) u 6 0 in X; ð11Þ
q P 0; g P 0 ) u P 0 in X: ð12Þ
This criterion is commonly referred to as nonnegativity or positivity preservation. It ensures that positive sources cannot cre-
ate negative concentrations or temperatures. In the case of steady heat conduction with q ¼ 0, a nonuniform temperature
distribution can only be maintained by supplying and removing some heat on the boundary.

A similar maximum principle can be formulated for elliptic equations equipped with mixed boundary conditions of
Dirichlet–Neumann type, whereby the diffusive flux is prescribed on a boundary part CN . For further information on max-
imum principles for elliptic boundary value problems we refer to [3,12,13,21].

3. Finite element discretization

The finite element method is based on a weak form of the continuous problem
aðu;wÞ ¼ ðq;wÞ; ð13Þ
where að�; �Þ is a bilinear form, u is the weak solution, w is any admissible test function, and ð�; �Þ is the usual shorthand nota-
tion for the scalar product in L2ðXÞ
ðu;wÞ ¼
Z

X
uðxÞwðxÞdx: ð14Þ
The bilinear form associated with the weak form of the diffusion equation reads
aðu;wÞ ¼
Z

X
rw � ðDruÞdx�

Z
C

wn � ðDruÞds; ð15Þ
where n denotes the unit outward normal to C. Let u 2 V ¼ v 2 H1ðXÞju ¼ g on C
n o

and w 2W ¼ w 2 H1ðXÞjw ¼ 0 on C
n o

.
Due to the requirement that w ¼ 0 on C, the contribution of the surface integral to (15) vanishes, whence
aðu;wÞ ¼
Z

X
rw � ðDruÞdx: ð16Þ
Let fuig be a set of piecewise-polynomial basis functions spanning a finite-dimensional subspace of V. Then an approximate
solution uh of problem (13) is given by
uhðxÞ ¼
X

j

ujujðxÞ: ð17Þ
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Using u ¼ uh and w ¼ ui in (13), one obtains a system of linear algebraic equations
X
j

aðuj;uiÞuj ¼ ðui; qÞ; 8i: ð18Þ
This linear system can be written in matrix form as Au ¼ b, where A ¼ aij
� �

is the global stiffness matrix and b ¼ fbig is the
load vector with coefficients
aij ¼ aðuj;uiÞ; bi ¼ ðui; qÞ: ð19Þ
Consistency requires that the sum of basis functions be equal to 1 at every point
X
j

ujðxÞ ¼ 1; 8x 2 �X: ð20Þ
Due to the fact that að1;uiÞ � 0, the stiffness matrix A has zero row sums
X
j

aij ¼ 0; 8i ð21Þ
and the vector of nodal values u ¼ uif g is defined up to an arbitrary additive constant. The uniqueness of the solution to the
discrete problem is provided by the Dirichlet boundary conditions to be implemented in a strong sense as explained below.

4. Discrete maximum principle

Consider an arbitrary discretization of the diffusion equation that can be expressed in terms of m discrete nodal values
ui; i ¼ 1; . . . ;m. For the time being, we do not distinguish between interior and boundary nodes. That is, the global m�m
stiffness matrix A ¼ faijg is assembled as if Neumann boundary conditions were prescribed. If the coefficients of A are given
by (16) and (19), then this sparse matrix is symmetric positive definite with zero row and column sums. Moreover, it is irre-
ducible, which means that its directed graph is strongly connected [23, p. 20]. In other words, for any pair of indices i and j
there exists a sequence of nonzero matrix entries
aik1 – 0; ak1k2 – 0; . . . ; aksj
– 0: ð22Þ
This property is dictated by the nature of elliptic problems in which a disturbance introduced at a single point may affect the
solution in the whole domain.

The sparsity pattern of A depends on the underlying mesh, on the choice of basis functions, and on the numbering of
nodes. Let the points x1; . . . ;xn be located in the interior of the domain X and xnþ1; . . . ; xm lie on the boundary C. This con-
vention implies that A and u ¼ ½u1; . . . ;um�T can be partitioned in block form as
A ¼
AXX AXC

ACX ACC

� �
; u ¼

uX

uC

� �
: ð23Þ
The subscripts X and C refer to row/column numbers in the range 1; . . . ;n and nþ 1; . . . ;m, respectively. For instance,
uX ¼ ½u1; . . . ;un�T is the vector of unknowns, whereas uC ¼ ½unþ1; . . . ;um�T is the vector of boundary values such that
uC ¼ g: ð24Þ
In view of (24), the algebraic system for the vector of unknowns uX can be written as
AXXuX ¼ bX � AXCg; ð25Þ
where bX denotes the contribution of the source/sink q to equations for internal points.
In a practical implementation, it is convenient to build the Dirichlet boundary conditions into the global stiffness matrix A

and solve the extended linear system
�Au ¼ b; ð26Þ
where the m�m matrix �A and the right-hand side b are defined as
�A ¼
AXX AXC

0 I

� �
; b ¼

bX

g

� �
: ð27Þ
The first n rows of �A are the same as those of A, whereas the last m� n rows are replaced by those of an identity matrix. If the
block AXX is nonsingular, then so is �A.

A nonsingular matrix �A is said to be monotone if �A�1 P 0. Here and below, inequalities are meant to hold elementwise for
all indices, unless a range of relevant index values is specified explicitly. By virtue of (27), the inverse of �A is given by
�A�1 ¼ A�1
XX �A�1

XXAXC

0 I

" #
ð28Þ
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and has no negative entries if A�1
XX P 0 and AXC 6 0. If �A is monotone and �aij 6 0 for all j – i, then �A is called an M-matrix. Any

matrix obtained by setting certain off-diagonal entries of �A to zero is also an M-matrix [23, p. 85].
Clearly, it is usually not feasible to calculate the inverse of �A or AXX and check the sign of its coefficients. Instead, the fol-

lowing well-known set of sufficient conditions can be used to prove monotonicity and the M-matrix property [23, p. 85].

Theorem 2. If AXX is an irreducibly diagonally dominant n�n matrix with aii > 0 for all i ¼ 1; . . . ;n and aij 6 0 for all i – j, then
A�1

XX 	 0.
By definition of an irreducibly diagonally dominant matrix [23,], AXX is supposed to be irreducible and jaiijP

P
j–ijaijj for all

i ¼ 1; . . . ;n, with strict inequality for at least one i. Since aij 6 0 for all i – j, the row sums of AXX should be nonnegative
ð
P

jaij P 0Þ and strictly positive ð
P

jaij > 0Þ for at least one row i.

Corollary 3. Under the conditions of Theorem 2, the block AXX is an M-matrix and
AXXuX P 0 ) uX P 0: ð29Þ
The M-matrix property of AXX ensures fast convergence of iterative solvers and makes it possible to prove a discrete coun-
terpart of the a priori estimates (8) and (9).

We will say that the discrete maximum principle (DMP) holds for problem (26) if
b P 0 ) u P 0; ð30Þ
whereas for bX 6 0 a positive maximum is attained on the boundary [3,5,13], i.e.,
max
i

ui 6 max
j
f0; gjg: ð31Þ
In a similar vein, a negative minimum is required to occur on C if bX P 0. If there are no sources or sinks ðbX ¼ 0Þ, then the
nodal values are bounded by
min
j
f0; gjg 6 ui 6max

j
f0; gjg; 8i: ð32Þ
In the case of linear and bilinear finite elements, the interpolant uh satisfies a local maximum principle in each cell, i.e., it is
bounded by the nodal values associated with the vertices of the mesh. Therefore, the DMP for nodal values implies that for
uh.

Many other definitions of DMP can be found in the literature. One of the most general formulations, which includes (31)
as a special case, is as follows [22]:
max
i

ui 6 max
j2Nþ

uj; ð33Þ
where Nþ ¼ 1 6 j 6 mjbj > 0
� �

. The right-hand side is taken to be zero if Nþ ¼ ;.

Theorem 3. The discrete maximum principle holds if A�1
XX P 0; AXC 6 0, and
Xm

j¼1

aij P 0; i ¼ 1; . . . ;n: ð34Þ
A proof of this theorem is as follows. Due to (28), the discrete operator �A enjoys the M-matrix property under the above con-
ditions. It follows that �A�1 P 0 and
b P 0 ) u ¼ �A�1b P 0: ð35Þ
If bX 6 0, let umax
C ¼maxj 0; gj

� �
, take w ¼ u� umax

C , and invoke (34) to prove that
Xm

j¼1

aijwj ¼
Xm

j¼1

aijuj � umax
C

Xm

j¼1

aij ¼ bi � umax
C

Xm

j¼1

aij 6 0; 8i ¼ 1; . . . ;n: ð36Þ
Since AXX is monotone, it follows that wX þ A�1
XXAXCwC 6 0. Furthermore, wC 6 0 and AXC 6 0, so wX 6 0, which implies (31).

For a proof of (33) we refer to [22].
If the first n rows of the global matrix A have zero row sums, then we can take w ¼ u�maxjgj. Arguing as above, we de-

duce that wX ¼ A�1
XX bX � AXCwC½ � and, consequently, a discrete counterpart of a priori estimate (8) holds for bX 6 0
ui 6 max
j

gj; 8i ¼ 1; . . . ;n: ð37Þ
The corresponding minimum principle for bX P 0 can be proved in the same way.

Theorem 4. The solution of (26) satisfies (37) if bX 6 0 and the first n rows of the irreducible stiffness matrix A satisfy the
following sufficient conditions
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 diagonal coefficients are strictly positive
aii > 0; 8i ¼ 1; . . . ; n; ð38Þ

 off-diagonal coefficients are nonpositive
aij 6 0; 8j – i; 1 6 j 6 m; ð39Þ

 the first n row sums are equal to zero
Xm

j¼1

aij ¼ 0; 8i ¼ 1; . . . ;n: ð40Þ
The proof follows from Theorems 2 and 3 reinforced by condition (40) which implies weak diagonal dominance and con-
sistency. If g ¼ const and bX ¼ 0, then u � g and the exact solution of the boundary value problem (7) is recovered in this case.

Conditions (38)–(40) are rather restrictive but provide a useful tool for the analysis and design of numerical schemes. In
the case of linear and bilinear finite element approximations of the Poisson equation, they are satisfied automatically on a
suitably designed mesh (triangles of acute/nonobtuse type, quadrilaterals of nonnarrow type [6,12,13]). However, the in-
volved geometric constraints turn out too restrictive in the case of problem (7) with an anisotropic diffusion tensor. If the
stiffness matrix A fails to satisfy (38)–(40) on a given mesh, then a violation of the discrete maximum principle is possible.
As a rule, it originates in regions in which the gradients of the solution are steep and not aligned with the orientation of mesh
edges, so that the discretization method is unable to capture them properly. On the other hand, no spurious maxima or min-
ima are generated if the numerical solution is well-resolved.

5. Algebraic splitting

In the present paper, we treat the sufficient DMP conditions (39) and (40) as algebraic constraints to be imposed at the
discrete level. The basic idea is to check the coefficients of A and adjust them, if necessary, subject to the following design
principles:


 perturbation to the residual of (26) admits a conservative flux decomposition;

 the discrete maximum principle holds for the solution of the perturbed system.

The methodology to be presented is based on the algebraic flux correction paradigm that was originally developed for con-
vection-dominated transport problems [15].

As already mentioned, the Galerkin approximation based on (16) and (19) gives rise to a symmetric stiffness matrix
A ¼ aij

� �
with zero row and column sums
aij ¼ aji;
X

i

aij ¼
X

j

aij ¼ 0: ð41Þ
The coefficients of this matrix satisfy (40) but may violate conditions (38) and (39) if the computational mesh and/or the
diffusion tensor D are anisotropic.

Following Stoyan [22], we split A so as to extract the ‘bad’ part Aþ ¼ aþij
n o

with
aþij :¼max 0; aij
� �

; 8j – i: ð42Þ
The diagonal coefficients of Aþ are defined so that it has zero row and column sums
aþii :¼ �
X
j–i

aþij : ð43Þ
The complement A� :¼ A� Aþ represents the ‘good’ part of the stiffness matrix
A ¼ Aþ þ A�: ð44Þ
By virtue of (41)–(43), the i th element of the vector A�u is given by
ðA�uÞi ¼
X

j

a�ij uj ¼
X
j–i

a�ij ðuj � uiÞ; 8i ¼ 1; . . . ;n ð45Þ
and can be expressed in terms of numerical fluxes from one node into another
ðA�uÞi ¼ �
X
j–i

f�ij ; f�ij ¼ a�ij ðui � ujÞ: ð46Þ
Adopting the convention that is commonly used in the context of 1D conservation laws, we will call a flux of the form
fij ¼ aijðui � ujÞ diffusive if aij 6 0 and antidiffusive if aij P 0. The fluxes f�ij and f�ji have the same magnitude and opposite signs
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f�ij þ f�ji ¼ 0: ð47Þ
This property provides discrete conservation. Every pair of fluxes can be associated with an edge of the graph of A, i.e., with a
pair of nonzero off-diagonal coefficients.

The i-th element of the residual vector r ¼ b� Au admits the representation
ri ¼ bi þ
X
j–i

fþij þ f�ij
h i

; i ¼ 1; . . . ;n: ð48Þ
In order to enforce the discrete maximum principle, the contribution of positive off-diagonal coefficients to the residual vec-
tor (48) may need to be reduced. To this end, every raw antidiffusive flux fþij is replaced by its limited counterpart
�fþij ¼ aijaþij ðui � ujÞ; 0 6 aij 6 1: ð49Þ
The solution-dependent correction factors aij ¼ aji should be chosen so that there exist a pair of nonnegative coefficients
bij P 0 and bji P 0 such that
�fþij ¼ bijðuk � uiÞ; �fþji ¼ bjiðul � ujÞ ð50Þ
for a pair of nodes k – i and l – j. In essence, this representation means that the limited antidiffusive fluxes �fþij and �fþji have
the same effect as diffusive fluxes from other nodes. Assuming that the modified matrix remains irreducible, criterion (50)
implies the discrete maximum principle for the solution of the perturbed system. A practical approach to the construction of
skew-symmetric fluxes �fþij ¼ ��fþji that satisfy the above monotonicity constraint is presented in the next section.

In essence, the correction step (49) corresponds to the following modification of Aþ:
�aþii :¼ �
X
j–i

�aþij ; �aþij ¼ aijaþij ; 8j – i: ð51Þ
The original matrix Aþ is recovered for aij � 1, whence the correction factors should be as close to 1 as possible without vio-
lating the discrete maximum principle. The flux-corrected scheme remains consistent if aij ! 1 as the mesh size h goes to
zero.

6. Slope limiting

Slope limiting amounts to reducing the magnitude of the solution difference ui � uj so as to enforce the DMP. Let �sij be a
limited counterpart of ui � uj such that
fþij ¼ aþij �sij; �sij ¼ aijðui � ujÞ: ð52Þ
To find the right value of �sij, we need the (approximate) solution gradients at nodes i and j. In the case of linear or bilinear
finite elements, a continuous approximation to nodal gradients can be obtained, e.g., using the lumped-mass L2-projection,
cf. [19]
r̂ui ¼
1

mi

X
k

cikuk; ð53Þ
where mi ¼ ð1;uiÞ is a diagonal entry of the lumped-mass matrix and cik ¼ ðui;rukÞ.
If the degrees of freedom are associated with edges/faces of the computational mesh, then the nodal gradients can be

recovered in a similar way, e.g., using the Crouzeix-Raviart/Rannacher-Turek elements to approximate ru. Alternatively,
they can be defined as an average of the mean values for the two cells sharing the edge/face [19].

Due to (20) the gradients of basis functions have zero sum at every point x 2 �X, so that cii ¼ �
P

k–icik and the right-hand
side of (53) can be written as
r̂ui ¼
1

mi

X
k–i

cikðuk � uiÞ: ð54Þ
For any pair of nodes i and j, a usable approximation to the difference ui � uj is
sij ¼ ðxi � xjÞ � r̂ui: ð55Þ
Introducing the maximum and minimum nodal values of u over the stencil of i
umax
i ¼max ui; ui þmax

j–i
ðuj � uiÞ

� �
; ð56Þ

umin
i ¼min ui;ui þmin

j–i
ðuj � uiÞ

� �
; ð57Þ
the extrapolated slope sij can be estimated in terms of the steepest gradients
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lijðumin
i � uiÞ 6 sij 6 lijðumax

i � uiÞ; ð58Þ

lij ¼
1

mi

X
k–i

jcik � ðxi � xjÞj: ð59Þ
A similar estimate is obtained for the one-sided approximation
sji ¼ ðxj � xiÞ � r̂uj: ð60Þ

The final formula for �sij incorporates some features of symmetric limited positive (SLIP) schemes [11], flux-corrected transport
(FCT) algorithms [15,25], and geometric high-resolution schemes based on the Barth–Jespersen slope limiter [1]. We take
�sij ¼
min 2lijðumax

i � uiÞ; ui � uj;2ljiðuj � umin
j Þ

n o
; if ui > uj;

max 2lijðumin
i � uiÞ;ui � uj;2ljiðuj � umax

i Þ
n o

; if ui < uj:

8><
>: ð61Þ
As the mesh is refined, the difference between the local slopes shrinks and �sij approaches ui � uj which corresponds to a con-
sistent finite element approximation. Moreover, the slope limiter is designed to be linearity preserving, i.e., �sij ¼ ui � uj if u is a
linear function. The discrete maximum principle follows from the fact that �f ij ¼ aþij �sij can be written in the form (50), where
uk ¼ umax

i or uk ¼ umin
i and
0 6 bij 6 2lija
þ
ij : ð62Þ
Likewise, the limited antidiffusive flux �f ji ¼ ��f ij admits an equivalent representation of the form (50) with 0 6 bji 6 2ljia
þ
ji

and ul ¼ umin
j or ul ¼ umax

j .
If i is an interior node and j is a node on the boundary, i.e., 1 6 i 6 n < j 6 m, then the coefficients aþji and aþjj belong to the

blocks ACX and ACC, respectively. These blocks pose no hazard to the DMP since the last m rows are replaced by rows of the
identity matrix in (27). Therefore, only the antidiffusive flux fþij into node i needs to be constrained and the following one-
sided slope limiting strategy is in order
�sij ¼
min 2lijðumax

i � uiÞ; ui � uj

n o
; if ui > uj;

max 2lijðumin
i � uiÞ;ui � uj

n o
; if ui < uj:

8><
>: ð63Þ
Remark 1. It is worth mentioning that the quality of the slope-limited Galerkin scheme depends on that of the underlying
gradient recovery method. In the case of a heterogeneous diffusion tensor, the gradient is discontinuous but the standard
lumped-mass L2 projection (53) samples data from both sides of an internal interface, which may result in slow grid
convergence (see below). Alternatively, problems with discontinuous coefficients can be treated using a special (ENO-like)
gradient recovery technique.

Example 1. In one space dimension, the diffusion tensor D reduces to a scalar coefficient and cannot be anisotropic. In this
case, the piecewise-linear Galerkin approximation on a uniform mesh of size h satisfies the DMP unconditionally, i.e., Aþ � 0
and fþij � 0. Although slope limiting is redundant, it is instructive to derive the 1D counterpart of (61) to illustrate the impli-
cations of the proposed limiting strategy.

The lumped-mass L2-projection (53) with mi ¼ h and ci�1=2 ¼ �1=2 reduces to the second-order accurate central differ-
ence approximation of the nodal gradient
u0i ¼
1
2

ui � ui�1

h
þ uiþ1 � ui

h

h i
: ð64Þ
The local maxima and minima of the grid function u are given by
umax
i ¼max ui�1;ui; uiþ1f g; umin

i ¼min ui�1;ui;uiþ1f g: ð65Þ
Estimate (58) with lij ¼ 1 and j ¼ iþ 1 yields the upper and lower bounds
umin
i � ui 6 hu0i 6 umax

i � ui: ð66Þ
The one-dimensional version of formula (61) can be written as follows:
�sij ¼MINMOD 2ðui�1 � uiÞ;ui � uiþ1;2ðuiþ1 � uiþ2Þf g; ð67Þ
where three-parameter MINMOD function is defined as [11]
MINMOD a; b; cf g ¼
min a; b; cf g; if a > 0; b > 0; c > 0;
max a; b; cf g; if a < 0; b < 0; c < 0;
0; otherwise:

8><
>: ð68Þ
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If ui or uiþ1 is a local maximum or minimum then the corresponding slope ratio is negative and �sij ¼ 0. Otherwise, the slope
limiter returns ui � uiþ1 or a slope of the same sign and smaller magnitude. Hence, it is activated only if two neighboring
slopes have opposite signs and/or their magnitudes differ by a factor of 2 and more.

7. Defect correction

After slope limiting, the corrected antidiffusive flux �fþij ¼ aþij �sij is added to the sum
�fþi ¼
X
j–i

�fþij ; 8i ¼ 1; . . . ;n: ð69Þ
The resulting vector �fþX represents the admissible contribution of Aþ to the residual
�rX ¼ bX � A�XXuX � A�XCg þ �fþX; ð70Þ
and the slope-limited solution uX is implicitly defined by the requirement that �rX ¼ 0.
Since the correction factors aij ¼ �sij=ðui � ujÞ 2 ½0;1� depend on the a priori unknown slopes, the corresponding algebraic

system is nonlinear and must be solved iteratively. Consider a sequence of approximations uðlÞ; l ¼ 0;1; . . . ; L. The current
iterate uðlÞ can be used to update the residual �rðlÞX and compute uðlþ1Þ

X as follows:
uðlþ1Þ
X

uðlþ1Þ
C

" #
¼

uðlÞX
uðlÞC

" #
þ

�AðlÞXX
�AðlÞXC

0 I

" #�1
�rðlÞX
0

" #
; ð71Þ
where �AðlÞ is a suitable ‘preconditioner’ to be defined below. Each cycle of this fixed-point defect correction scheme involves
the solution of the auxiliary linear system
�AðlÞXX
�AðlÞXC

0 I

" #
v ðlþ1Þ

X

v ðlþ1Þ
C

" #
¼

�rðlÞX
0

" #
ð72Þ
followed by the explicit solution update uðlþ1Þ ¼ uðlÞ þ v ðlþ1Þ. The iteration process continues until the norm of the nonlinear
residual rðlþ1Þ becomes small enough.

At the first outer iteration, we take uð0ÞX ¼ 0;uð0ÞC ¼ g, and �Að0Þ ¼ A� or �Að0Þ ¼ A. The latter choice yields the unconstrained
Galerkin solution that may violate the discrete maximum principle. On the other hand, the operator �Að0ÞXX ¼ A�XX enjoys the M-
matrix property, so the DMP holds but the initial guess uð1ÞX may be very poor.

The simplest preconditioner for l ¼ 1; . . . ; L is, again, the linear operator �AðlÞ ¼ A�. It does not need to be reassembled, and
the auxiliary system (72) can be solved efficiently due to the M- matrix property of �AðlÞXX. However, the convergence of outer
iterations tends to be very slow, or even fail, if the anisotropy effects are too strong. Moreover, only the fully converged solu-
tion is guaranteed to satisfy the DMP.

The convergence behavior of the defect correction scheme (71) can be improved using underrelaxation [20, p. 67]. Let the
diagonal entries of �AðlÞ be redefined as
�aðlÞii :¼ �aðlÞii =xi; 8i ¼ 1; . . . ;n; ð73Þ
where 0 < xi < 1 is a free parameter that makes �AðlÞ strictly diagonally dominant.
Implicit underrelaxation of the form (73) speeds up the convergence of inner iterations for the linear system (72) and

makes it possible to constrain the solution changes so as to stabilize the residual (70) of the nonlinear problem. If fixed-point
iteration (71) converges then the final solution u ¼ uðLÞ does not depend on the choice of �AðlÞ and xi but the convergence his-
tory and the properties of intermediate approximations do. The best value of the relaxation parameter xi is problem-depen-
dent and must be determined by trial and error, which restricts the practical utility of this approach.

In order to secure the convergence of outer iterations, it is worthwhile to design the preconditioner �AðlÞ so that every solu-
tion update is positivity-preserving. In accordance with one of Patankar’s ‘four basic rules’ [20, pp. 36–39], we treat the anti-
diffusive flux �fþij ¼ bijðuk � uiÞ as a source term and linearize it as follows:
�fþij ¼ bðlÞij uðlÞk � uðlþ1Þ
i

	 

: ð74Þ
Since bðlÞij P 0, this ‘negative-slope linearization’ [20] preserves positivity if we take
�AðlÞ ¼ A� þ diag rðlÞi

n o
; rðlÞi ¼

X
j–i

bðlÞij : ð75Þ
Note that it is necessary to update the diagonal part of the preconditioner �AðlÞ at each outer iteration. Alternatively, we can
invoke estimate (62) and consider
�AðlÞ ¼ A� þ diag rif g; ri ¼ 2
X
j–i

lija
þ
ij : ð76Þ
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Both definitions enhance the diagonal dominance of �AðlÞ and can be interpreted as ‘relaxation through inertia’ [20] for A�

or selective lumping for A. To prove positivity preservation, let us cast the linear system associated with (71) into the
form
�AðlÞXX
�AðlÞXC

0 I

" #
uðlþ1Þ

X

uðlþ1Þ
C

" #
¼

�bðlÞX
g

" #
: ð77Þ
Due to (70) and (71) the right-hand side �bðlÞX of this linear system is given by
�bX ¼ �rX þ �AðlÞXXuX þ �AðlÞXCg ¼ bX þ diagð�AðlÞXX � A�XXÞuX þ �fþX: ð78Þ
By construction, the i-th element of �bðlÞX admits the representation
�bðlÞi ¼ bi þ uðlÞi

X
j–i

ð�bðlÞij � bðlÞij Þ þ umax
i

X
ui>uj

bðlÞij þ umin
i

X
ui<uj

bðlÞij ; ð79Þ
where �bðlÞij ¼ bðlÞij or �bðlÞij ¼ 2lija
þ
ij P bðlÞij for (75) and (76), respectively. As a result, all coefficients in (79) are nonnegative. Since

�AðlÞXX is an M-matrix and �AðlÞXC 6 0
bX P 0; uðlÞ P 0 ) �bX P 0 ) uðlþ1Þ P 0: ð80Þ
Positivity preservation is a valuable asset since intermediate solutions remain free of undershoots and residuals converge to
the machine zero in a monotone fashion. However, since the column sums of �AðlÞ are nonzero, only the final solution is guar-
anteed to be conservative. This is in contrast to preconditioning by �AðlÞ ¼ A� or �AðlÞ ¼ A, whereby each solution update is con-
servative but may fail to be positivity-preserving.

Remarkably, the sign of uðlÞ is preserved even if the preconditioner �AðlÞ is taken to be the diagonal part of (75) or (76). In
this case, the i-th equation can be written as
�a�ii uðlþ1Þ
i ¼ �rðlÞi þ ð�a

ðlÞ
ii � a�ii Þu

ðlÞ
i ¼ �bi �

X
j–i

a�ij uðlÞj ; ð81Þ
where �rðlÞi and �bi are given by Eqs. (70) and (79), respectively. By definition, the coefficients a�ij are nonpositive, so positivity
preservation follows from that for �bX.

The use of a diagonal preconditioner �AðlÞ leads to a fully explicit solution strategy but the convergence of outer iterations is
very slow. The implicit version equipped with (75) or (76) converges faster but, nevertheless, thousands of flux/defect cor-
rection steps may be required to achieve the prescribed tolerance on a fine mesh. As in the case of linear systems which re-
sult from the discretization of elliptic problems, convergence rates deteriorate as the mesh is refined. In many cases, the
nonlinearity of the slope-limited finite element discretization results in a high overhead cost.

In light of the above, a nonlinear full approximation storage/full multigrid (FAS-FMG) solution strategy lends itself to
the numerical treatment of the problem at hand. The slowly converging fixed-point iteration (71) constitutes a usable
smoother that can be preconditioned by the diagonal or upper/lower triangular part of �AðlÞ. The use of an ILU decomposition
(in conjunction with appropriate renumbering) is also feasible, and its existence is guaranteed by the M-matrix property of
�AðlÞXX.

8. Numerical examples

In this section, we test the ability of the proposed method to enforce the DMP for problem (7) with an anisotropic diffu-
sion tensor. Also, we present a grid convergence study for test problems with smooth and discontinuous data. The difference
between the numerical solution uh and the exact solution u is measured in the norms
ku� uhk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

mijuðxiÞ � uij2
r

; ku� uhk1 ¼max
i
juðxiÞ � uij; ð82Þ
where mi ¼ ð1;uiÞ denotes a diagonal coefficient of the lumped matrix or, equivalently, the area of the control volume asso-
ciated with the mesh point xi. The defect correction scheme preconditioned by (75) is employed in all numerical tests.

8.1. Nonsmooth solutions

To begin with, we consider two examples that represent a challenge to the conventional Galerkin discretization and illus-
trate the benefits of slope limiting. The computational domain for the first test problem (TP1) is X ¼ ð0;1Þ2 n ½4=9;5=9�2, as
depicted in Fig. 1(a). The outer and inner boundary of X are denoted by C0 and C1, respectively. Let the following Dirichlet
boundary conditions be imposed on C ¼ C0 [ C1
u ¼ �1 on C0; u ¼ 1 on C1: ð83Þ
The diffusion tensor D is a symmetric positive definite matrix given by the formula



Fig. 1. TP1: (a) computational domain X, (b) triangular mesh and (c) quadrilateral mesh.

3458 D. Kuzmin et al. / Journal of Computational Physics 228 (2009) 3448–3463
D ¼ Rð�hÞ
k1 0
0 k2

� �
RðhÞ; RðhÞ ¼

cos h sin h

� sin h cos h

� �
; ð84Þ
where k1 ¼ 100 and k2 ¼ 1 are the diffusion coefficients associated with the axes of the Cartesian coordinate system rotated by
the angle h ¼ �p=6. The source term is taken to be zero ðq � 0Þ. By the continuous maximum principle, the (unknown) exact
solution to problem (7) is bounded by the Dirichlet boundary values (83). However, the diffusion tensor (84) is highly aniso-
tropic, which may result in a violation of the discrete maximum principle even on a regular mesh of acute/nonnarrow type.

The verification of the DMP property is performed for linear and bilinear finite element discretizations on two uniform
meshes (see Fig. 1(b) and (c)). In both cases, the total number of nodes is 1360. The number of mesh elements equals
2560 for the triangular mesh and 1280 for the quadrilateral one. The numerical solutions computed on these meshes by
the standard Galerkin method are displayed in Fig. 2. Both of them attain correct maximum values but exhibit spurious min-
ima that fall below the theoretical lower bound umin ¼ �1 by about 5%. Although the undershoots are relatively small, they
might be totally unacceptable in some situations. For example, if the scalar variable u is responsible for phase transitions,
such undershoots can trigger a nonphysical process. Since it is rather difficult to ‘repair’ a DMP-violating solution [18], it
is worthwhile to use a scheme that does not produce undershoots/overshoots in the first place. The constrained Galerkin
solutions computed on the same meshes using the slope limiter proposed in this paper are presented in Fig. 3. Both of them
satisfy the DMP perfectly, and no other side effects are observed. Note that nonlinear schemes which force the solution to be
positive are not applicable to this test problem.

The second test problem (TP2) stems from a benchmark suite for anisotropic diffusion problems on general grids ([8], Test
9: anisotropy and wells). The diffusion tensor is given by (84) with k1 ¼ 1; k2 ¼ 10�3, and h ¼ 67:5�. As before, the source term
is zero. The computational domain X ¼ ð0;1Þ2 n ð�X4;6 [ �X8;6Þ has two square holes that correspond to cells (4,6) and (8,6) of a
uniform grid with 11 � 11 cells. The Dirichlet boundary conditions prescribed on C1 ¼ @ �X4;6 and C2 ¼ @ �X8;6 are as follows:
u ¼ 0 on C1; u ¼ 1 on C2: ð85Þ
Fig. 2. TP1: unconstrained solutions; (a) triangular mesh and (b) quadrilateral mesh.



Fig. 3. TP1: constrained solutions; (a) triangular mesh and (b) quadrilateral mesh.

Fig. 4. TP2: bilinear elements; (a) unconstrained solution and (b) constrained solution.
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Homogeneous Neumann boundary conditions are applied at the outer boundary C0 of X. For a detailed description of this
benchmark problem we refer to [8].

The numerical solutions obtained with 11 � 11 bilinear finite elements are shown in Fig. 4. On such a coarse mesh, the
unconstrained Galerkin method produces undershoots and overshoots of about 14%. Other discretization methods presented
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and compared in [8] behave in the same way, whereas our slope-limited solution is uniformly bounded by the Dirichlet
boundary values, as required by the maximum principle.

8.2. Smooth solutions

In this subsection, we study the approximation properties of the proposed technique as applied to problems with smooth
solutions. Usually even the conventional Galerkin scheme does not violate the discrete maximum principle for this type of
problems. Thus, no slope limiting is actually required for smooth data. The goal of the numerical experiments to be per-
formed is to compare the accuracy and convergence behavior of the constrained nonlinear scheme to those of the underlying
Galerkin discretization.

The diffusion tensor and source term for the third test problem (TP3) are given by
D ¼
100 0

0 1

� �
; qðx; yÞ ¼ 50:5 sinðpxÞ sinðpyÞ: ð86Þ
With these parameter settings, the exact solution to the Dirichlet problem (7) is
uðx; yÞ ¼ 1
2p2 sinðpxÞ sinðpyÞ: ð87Þ
In accordance with this formula, homogeneous Dirichlet boundary conditions are imposed. The problem is solved on a se-
quence of distorted triangular and quadrilateral meshes. Given a uniform grid with spacing h, its distorted counterpart is
generated by applying random perturbations to the Cartesian coordinates of internal nodes
x :¼ xþ anxh; y :¼ yþ anyh; ð88Þ
where nx and ny are random numbers with values in the range from�0.5 to 0.5. The parameter a 2 ½0;1� quantifies the degree
of distortion. The default value a ¼ 0:4 was adopted to introduce sufficiently strong grid deformations without tangling.

In this test, the results produced by the standard Galerkin scheme and by its slope-limited counterpart are optically indis-
tinguishable. The two diagrams in Fig. 5 show the solutions computed using linear and bilinear finite elements with
h ¼ 1=16. The corresponding grid convergence study is presented in Tables 1 and 2. On coarse meshes, the slope limiter tends
to ‘clip’ smooth peaks, which is a well-known drawback of such methods [15]. To alleviate the undesirable decay of admis-
sible local extrema, the sufficient conditions of DMP should be replaced by a weaker monotonicity constraint. As the mesh is
refined and resolution improves, the slope limiter is gradually deactivated, and the error norms approach those for the linear
Galerkin discretization. The results presented in Tables 1 and 2 indicate that slope limiting does not degrade the order of
convergence, and peak clipping becomes less pronounced on finer meshes.

8.3. Heterogeneous diffusion

The last example (TP4) is designed to test the ability of a discretization technique to handle problems with discontinuous
coefficients. Let the diffusion tensor D be a piecewise-constant function defined in the square domain X ¼ ð0;1Þ2 as follows:
Dðx; yÞ ¼
D1; if x < 0:5;
D2; if x > 0:5;

�
D1 ¼

1 0
0 1

� �
; D2 ¼

10 3
3 1

� �
: ð89Þ
Fig. 5. TP3: numerical solutions; (a) triangular mesh and (b) quadrilateral mesh.



Table 1
TP3: grid convergence study for the unconstrained Galerkin scheme.

h Triangular meshes Quadrilateral meshes

ku� uhk2 ku� uhk1 ku� uhk2 ku� uhk1
1/16 0.158E�03 0.576E�03 0.113E�03 0.396E�03
1/32 0.445E�04 0.154E�03 0.270E�04 0.113E�03
1/64 0.112E�04 0.473E�04 0.693E�05 0.351E�04
1/128 0.320E�05 0.140E�04 0.176E�05 0.789E�05
1/256 0.820E�06 0.467E�05 0.441E�06 0.231E�05

Table 2
TP3: grid convergence study for the constrained Galerkin scheme.

h Triangular meshes Quadrilateral meshes

ku� uhk2 ku� uhk1 ku� uhk2 ku� uhk1
1/16 0.293E�03 0.136E�02 0.265E�03 0.103E�02
1/32 0.656E�04 0.407E�03 0.616E�04 0.337E�03
1/64 0.146E�04 0.121E�03 0.104E�04 0.847E�04
1/128 0.321E�05 0.140E�04 0.204E�05 0.211E�04
1/256 0.826E�06 0.467E�05 0.468E�06 0.642E�05
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This heterogeneous diffusion tensor has a jump in value and direction of anisotropy across the line x ¼ 0:5. The source term q
is also discontinuous
qðx; yÞ ¼
4:0; if x < 0:5;
�5:6; if x > 0:5:

�
ð90Þ
For D and q defined as above, the analytical solution of problem (7) is given by
uðx; yÞ ¼ 1� 2y2 þ 4xyþ 2yþ 6x; if x 6 0:5;
b2y2 þ c2xyþ d2xþ e2yþ f2; if x > 0:5:

(
ð91Þ
Substitution into (7) yields the following values of the involved coefficients
b2 ¼ �2; c2 ¼
4ðD2ð1;2Þ þ 1Þ
D2ð1;1Þ

; d2 ¼
6� 4D2ð1;2Þ
D2ð1;1Þ

; ð92Þ

e2 ¼
4D2ð1;1Þ � 2D2ð1;2Þ � 2

D2ð1;1Þ
; f 2 ¼

4D2ð1;1Þ þ 2D2ð1;2Þ � 3
D2ð1;1Þ

: ð93Þ
Again, the discretization is performed using linear and bilinear finite elements on distorted meshes. These meshes are con-
structed as explained in the previous subsection but nodes that belong to the line x ¼ 0:5 are shifted in the y-direction only.
The unconstrained Galerkin solutions for h ¼ 1=16 are presented in Fig. 6. Their constrained counterparts look the same but a
Fig. 6. TP4: numerical solutions; (a) triangular mesh and (b) quadrilateral mesh.



Table 3
TP4: grid convergence study for the unconstrained Galerkin scheme.

h Triangular meshes Quadrilateral meshes

ku� uhk2 ku� uhk1 ku� uhk2 ku� uhk1
1/16 0.101E�02 0.337E�02 0.473E�03 0.167E�02
1/32 0.328E�03 0.133E�02 0.154E�03 0.636E�03
1/64 0.841E�04 0.374E�03 0.426E�04 0.242E�03
1/128 0.211E�04 0.107E�03 0.109E�04 0.514E�04
1/256 0.551E�05 0.351E�04 0.286E�05 0.166E�04

Table 4
TP4: grid convergence study for the constrained Galerkin scheme.

h Triangular meshes Quadrilateral meshes

ku� uhk2 ku� uhk1 ku� uhk2 ku� uhk1
1/16 0.244E�02 0.155E�01 0.473E�03 0.167E�02
1/32 0.161E�02 0.187E�01 0.154E�03 0.636E�03
1/64 0.101E�02 0.109E�01 0.426E�04 0.242E�03
1/128 0.281E�03 0.438E�02 0.109E�04 0.514E�04
1/256 0.140E�03 0.214E�02 0.286E�05 0.166E�04
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comparison of the error norms presented in Tables 3 and 4 reveals significant differences between the convergence histories
of the slope-limited version on triangular and quadrilateral meshes. Although the solution consists of two smooth patches,
its gradient is discontinuous across the internal interface x ¼ 0:5. Moreover, the corresponding kink in the solution profile
makes the outcome of the slope limiting procedure highly mesh-dependent. Note that the solution is smooth along the y-
axis and piecewise-smooth along the x-axis. This is why the constrained and unconstrained solutions coincide on quadrilat-
eral meshes.

On the other hand, some edges of the triangular mesh are directed skew to the kink so that the corresponding solution
differences are large, whereas the distance to the nearest local maximum or minimum, as defined in (56) and (57), is small.
This places a heavy burden on the slope limiter which is forced to reject a large percentage of the antidiffusive flux in accor-
dance with (61). The approximation of discontinuous gradients by means of the standard L2 projection (53) can also be
responsible for the relatively slow convergence on distorted triangular meshes. In summary, this test problem turns out
to be very easy or rather difficult, depending on the orientation of mesh edges. It was included to identify the limitations
of the proposed limiting strategy, discuss their ramifications, and illustrate the need for further research.

9. Summary and conclusions

The objective of the present paper was to review some important qualitative properties of exact solutions to elliptic prob-
lems and preserve these properties at the discrete level. After a brief overview of continuous maximum principles, linear and
bilinear finite element discretizations of the stationary diffusion equation were considered. Sufficient conditions of the dis-
crete maximum principle were formulated. The residual of the algebraic system was decomposed into internodal fluxes
associated with positive and negative coefficients of the global stiffness matrix. Flux correction was performed using a
new slope limiter based on gradient reconstruction. The resulting nonlinear problem was solved by an iterative defect cor-
rection scheme equipped with a positivity-preserving preconditioner. A numerical study was performed for several 2D test
problems with anisotropic diffusion tensors and discontinuous coefficients.

The presented computational results demonstrate that the new approach to slope limiting rules out the formation of spu-
rious undershoots and overshoots, while preserving the accuracy and consistency of the underlying discretization in the case
of sufficiently smooth data. The same algorithm can be used to enforce the DMP in three-dimensional applications. An exten-
sion to mixed finite elements is feasible and will be addressed in future work. Further research is required to accelerate the
slowly converging defect correction scheme and reduce the significant overhead cost incurred by the nonlinearity of the con-
strained approximation. In the case of unsteady anisotropic diffusion problems, multidimensional flux-corrected transport
(FCT) algorithms [15,25] offer a cost-effective alternative to gradient-based slope limiting.
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